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Abstract

Antibodies are a critical component of the adaptive immune system. Their high target

specificity combined with their modularity has served to popularize these molecules as a

class of biotherapeutics. Characterizing antigen binding is contingent on having accurate

knowledge of an antibody’s structure. However, experimentally solving the structure of

a protein is prohibitively expensive. Using efficient computational methods to extract

structural features from a sequence is becoming feasible due to advances in deep learning.

We investigated a class of self-supervised networks trained on large sets of proteins known

as Protein Language Models (PLMs).

Here we present the extent to which these models grasp the structure of an antibody. A

sparse, weighted combination of a PLM’s internal embeddings has been shown to accurately

predict inter-residues contacts in proteins. However, it is unclear whether these methods

work for antibodies. Our experiments showed that pretraining the LM on antibodies

provides little to no benefit for contact prediction. Rather, pre-training a PLM on general

proteins and weighting attention maps based on their relevance to antibody structure

yields the best results. Regardless, no models achieved high precision for rare contacts or

those involved in hypervariable regions.
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Glossary

APLM A PLM which is pretrained using only antibodies.

CDR Complementarity determining region within each FAB. These are highly variable

loops which are largely responsible for an antibody’s binding behaviour .

Fab Antigen binding fragment on the tip of each branch of a Y-shaped antibody .

GPLM A PLM which has been pre-trained using a set of “general” proteins. This is

different to an APLM which is pretrained on antibodies.

LR Logistic Regression is a statistical model which, despite its name, is used for binary

classification..

MI Mutual information.

NMR Nuclear Magnetic Resonance Spectroscopy is an experimental technique for protein

structure determination.

PLM Protein language model: this usually refers to a transformer-based architecture

which is trained on sequences of amino acids .

RF Random Forests are ensemble methods. They comprise a collection of decision trees,

all trained independently on the same dataset..

VDJ The process by which variable (V), diversity (D) and joining (J) gene segments are

combined during transcription. .
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Chapter 1

Introduction

Antibodies, or immunoglobulins, are specialized proteins which form the foundation of

all jawed vertebrates’ adaptive immune response. Their role is to identify and bind to

potentially pathogenic molecules known as antigens (Ag). Each antibody is finetuned

to bind to a specific structural sequence motif (epitope) within the Ag. If bound to a

functionally relevant area, the antibody will neutralise the threat directly. Otherwise, the

antibody functions as a tag, recruiting other immune cells to eliminate the threat.

The ability to target a protein complex with high specificity has popularized monoclonal

antibodies (mAbs) as a class of biotherapeutics [59]. In fact, mAbs have come to dominate

the pharmaceutical market, comprising seven of the ten top-selling drugs of 2018 [25].

Oncology is arguably the branch of medicine in which mAbs have found the most success.

For example, Trastuzumab, a popular drug for treating HER2-positive (human epidermal

growth factor receptor 2) cases of breast cancer [25], is a rationally designed mAb. It acts

by binding to the extracellular domain of the HER2 protein triggering the degradation of

the cancer cell [8].

1.1 Antibody discovery and design

Antibodies have the potential to be an incredibly flexible tool in building therapeutics.

Given that a person is ill, the ultimate goal is to be able to design an antibody which

targets and neutralises the cause of illness. An instrumental goal to that end would be to

develop an antibody that targets a known epitope. Discovering, or actively designing such

a molecule, is riddled with difficulties.

In the vast landscape of possible antibody conformations, finding a molecule appropriate

for medicinal use is challenging. Many characteristics need to be optimised simultaneously.

The most important features of an antibody are its binding affinity, a measure of the

strength with which an antibody binds to a target, and specificity, the ability to discriminate

between the antigen and other proteins. However, other important attributes include
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immunogenicity, folding stability, effector functions, solubility and pharmacokinetics (these

features are often summarised as the molecule’s “developability” [106]). Depending on the

requirements, the antibody might also need to facilitate the attachment of a cytotoxic drug

forming an antibody-drug conjugate. This poses an additional challenge of optimising the

link between the antibody and the drug molecule [113]. Unfortunately, these properties

cannot be optimised for independently since improvements in one attribute generally lead

to the degradation of another [34, 41]. Drawing inspiration from the immune system’s

natural optimisation pipeline, many approaches have been tested to solve this Pareto

optimisation problem. Three broad categories of techniques can be used to find antibodies

with desirable binding functionality and characteristics [106].

The first approach directly harnesses the power of the mammalian immune system,

isolating antibodies produced by the body in response to infection. This in vivo discovery

method has led to the production of mAbs that target new strains of influenza [121]; or

neutralise severe acute respiratory syndrome (SARS) coronavirus [115]. Developing a

feasible drug requires optimising around a wild-type antibody. These are often produced

by murine or camelid immune systems and need to be humanized to prevent harmful side

effects. Despite the huge number of naturally occurring, wild-type sequences, there is little

control over how much of the conformational space is explored using this technique.

To avoid this limitation, the second approach does not rely on the design prowess of the

immune system. In vitro discovery relies on laboratory screening of large libraries of diverse

antibody sequences. In a common procedure known as phage display, immunoglobulins

from these libraries are expressed on the surface of bacteriophages. They are subsequently

exposed to a target peptide adhered to a solid surface. After washing, it is assumed that

only the remaining phages express antibodies that bind to the target. This selection

cycle can be repeated several times to maximise binding affinity [42]. One issue with

this approach is that the selection process does not mimic the conditions of the human

body. With a heavy focus on binding affinity, the resulting antibodies often possess poor

biophysical properties and can even elicit an immune response [106]. Another challenge is

targeting a specific epitope on the target antigen. Phage display selects for antibodies which

bind to immunodominant epitopes since these locations facilitate the tightest binding,

rather than a functionally relevant epitope with lower affinities [106]. Lastly, screening

campaigns can also be costly and time-consuming [113].

Recently, to reduce costs and have more control, in silico approaches to library genera-

tion and screening have shown much promise. A computational design framework, referred

to as rational design [106], allows parallel screening for several biophysical properties as

well as selection based on the ability to target specific epitopes. Increased control over

biophysical properties, such as solubility, is important since natural selection does not

optimise for characteristics associated with developability (the ease with which a molecule
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can be administered as a drug). For example, a successful antibody candidate is required

to be soluble at the concentrations required to avoid aggregation when administered as a

drug. However, protein abundance in vivo has been shown to be highly correlated with

solubility [110] which supports the hypothesis that natural proteins tend to be only as

stable and soluble as is required for them to perform their function [109]. This example

points to the need for techniques, other than evolutionary pressure, to discover developable

antibodies. It is feasible that computational approaches could generate antibodies with

improved biophysical properties by searching the space of possible proteins left unexplored

by evolution. This space is incredibly vast and it is therefore important to be able to

quickly and accurately determine whether or not a candidate molecule binds to a target.

Structure-based design is a sub-category of these emerging computational approaches.

If the 3D structure of a candidate is known, computational tools such as SnugDock [120]

can be used to dock the antibody to a target antigen. Rational design based on docking

procedures is just one motivation for accurate structural modelling techniques. An in silico

structure-based design pipeline was proposed by Hummer et al. [50]. First, the structure

of both the antibody and antigen is predicted. Based on these predictions and using a

separate model, the locations of the paratope and epitope are inferred. After docking the

predicted antibody to the targeted region on the antigen, an affinity prediction method will

quantify the binding affinity. Affinity data can be used to optimise the candidate antibody

sequence. Much progress is required, but recent developments in structure prediction [55]

indicate that a process such as this is on the horizon of possibilities.

1.2 Antibody structure

To understand why mAbs are so effective at targeting antigens, one must turn to their

structure and, therefore, to the principles which govern protein folding.

1.2.1 Protein folding

As workhorses of the cell, proteins act as essential structural and motor elements serving

as the catalysts for virtually every biochemical reaction neccesary to living. These

macromolecules are comprised of one or many chains of amino acids, each of which is

folded into a unique conformation. That intricate 3D structure allows the protein to

perform its function via distinct surface characteristics that determine which molecules a

protein interacts with and the nature of that interaction. To study a protein’s function, it

is therefore useful to be able to determine its shape. Due to their size, it is not possible to

visualise a protein using a microscope. Techniques such as X-ray crystallography, Nuclear

Magnetic Resonance Spectroscopy NMR, or the recently popular [16] Cryo-EM are used

to uncover their complex atomic configurations.
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Figure 1.1: Cartoon illustration of how amino acids combine into chains. Proteins
comprise amino acids, the backbones of which contain the same series of atoms: N,Cα, C.
The first atom of the side chain is Cβ for all amino acid types other than glycine. On
the top right is an example of a short peptide chain formed by the joining of these amino
acids. The bottom right illustrates how a chain of amino acids, the primary structure,
can fold into a complex geometry. For the purposes of this document, two residues are
considered to be in contact with one another if they are separated by at least six residues
in the sequence and are at most 8Å apart in 3D space.

Protein structure is usually explained incrementally starting from the primary structure:

a chain comprising amino acids joined sequentially by peptide bonds (Fig 1.1). Only

twenty amino acids are directly encoded in the human genome. Each of these is uniquely

distinguished by its side chains which determine the monomer’s properties, such as whether

it is acidic, basic, aliphatic or aromatic. Every amino acid shares a backbone of N,Cα, C

atoms, and every side chain, other than glycine, attaches to this backbone via a Cβ

atom. Peptide bonds between amino acids are fixed and cannot rotate. However, all

the other single bonds in the chain are free to rotate allowing the chain to twist and

fold. Locally, chain topology tends to converge on a set of common structural motifs

stabilised by hydrogen bonds. These folding patterns, referred to as the chain’s secondary

structure, include alpha helices and beta-pleated sheets. The ensemble of helices, sheets,

and other shapes combine across the chain into a tertiary structure. Often, a chain can

be conceptually split into separate domains which fold independently of one another. A

protein can comprise multiple chains, intertwining to form the macromolecule’s quaternary

structure. The final shape of the folded chains, stabilised by thousands of non-covalent

bonds, is the most energetically favourable.

The relationship between a protein’s sequence and the shape it folds into was first

formalised by Christian Anfinsen. Anfinsen’s “thermodynamic hypothesis” states that

a protein’s native structure in a given environment is entirely determined by its amino

acid sequence [5]. It is worth noting that there is some evidence against this hypothesis.

4



Figure 1.2: Cartoon illustration of an antibody’s structure and variable domain
sequences. The structure of an antibody (left) contains a heavy chain, shown in shades of
blue, and a light chain shown in shades of pink. The variable fragment, Fv, is comprised of
the variable regions from both chains (VH, VL). The crystallizable fragment of the antibody
(Fc) contains the conserved regions of both chains (CH1, CH2, CH3, CL). The two tips of
the Y-shaped structure are known as antibody binding fragments (Fabs) and are responsible
for binding to a matching antigen. The ability to bind to a target depends on the shape
of this binding fragment and is highly determined by the complementarity-determining
regions (CDRs) which lie in the variable regions of each chain and characterise the paratope.
On the right is an illustration of the sequences of both chains’ variable domains. Each
domain has four framework regions and three CDRs. Approximate mappings between
gene segments (VDJ in the heavy chain, VJ in the light chain) and regions of the variable
domain are also shown.

For example, Rosenberg et al. [95] showed that synonymous codons, codons that code for

identical amino acids, can affect how the protein folds. This implies that identical sequences

can have diverging conformations. To add further complication to this relationship, proteins

are not truly rigid bodies. Each molecule could have more than one energetically favourable

state, and may even require flexibility to perform its function. An example of protein

flexibility being beneficial is a phenomenon known as “induced fit”. To promote an even

tighter fit between itself and its target, a protein will change its shape upon binding. This

behaviour is commonly observed among enzymes during substrate binding. Because of

this, proteins are often described as being in one of two states: apo when unbound and

holo when bound.

1.2.2 Standard model of antibody structure and diversity

An antibody typically consists of two heavy and two light chains linked by disulfide bonds

(Fig 1.2). Each light chain comprises a variable (VL) and constant (CL) domain and each

heavy chain includes a variable (VH) and three constant domains (CH1, CH2, CH3). The
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base of the antibody, known as the crystallizable fragment (Fc), only includes constant

domains and is not involved in antigen binding. It contains conserved glycosylation sites

that mediate interactions with other parts of the immune system. Instead, the tips of

the symmetrical Y-shaped structure act as the interface between an antibody and its

target. These are aptly named antigen-binding fragments (Fabs) and contain the variable

domains of the heavy (VH) and light chains (VL). In an effort to identify previously

unseen foreign invaders, the immune system spawns a massive variety of Fabs [29, 68].

Within each Fab, diversity is concentrated in six β-strand loops, three per chain, known

as the complementarity determining regions (CDR). The 3D structure of these loops and

their relative positions to one another and to the remainder of the chain are of critical

importance: they are largely responsible for an antibody’s binding properties.

The most diverse of these regions, and arguably the best predictor for epitope binding

[68], is the third CDR loop on the heavy chain (HCDR3). Located at the centre of the

binding site, it is largely responsible for the site’s topology, makes the most contacts with

the epitope [73], and strongly affects binding energetics [65]. H3 loops range in shape from

long, finger-like projections to short loops that form cavities to interact with a protrusion

on the epitope [73].

Although briefly defined in Sec 1, a more precise definition of the epitope is the set of

antigen residues directly involved in antigen-antibody binding. When forming a complex,

these residues come into contact with a corresponding set of residues on the surface of the

antibody known as the paratope. Although CDR loops are a reasonable approximation of

the paratope, they are not synonymous. A residue is only considered part of the paratope

if it lies proximal to the antigen or significantly contributes to a decrease in Gibbs free

energy upon binding [27].

There are approximately 1013 unique antibody sequences in the human antibody

repertoire [44]. Although sequence diversity does not map directly to structural diversity,

this number indicates the scale at which the immune system evolves new antibody

conformations. Diversification of the antibody repertoire occurs in two stages. The first

is during B-cell maturation in a process known as VDJ recombination [56]. During this

process, B-cells randomly rearrange segments of the genes that code for the CDRs. The

gene coding for VH contains multiple variable (V), diversity (D) and joining (J) segments

and the gene that codes for VL contain multiple V and J segments. This means that

LCDR3’s sequence depends on the random recombination of a V and J segment whereas

HCDR3 depends on the random recombination of V, D, and J segments (Fig 1.2). During

transcription, the HCDR3 sequence is determined by a random selection of these segments

being spliced together into one of 1015 conceivable combinations [24]. Dependence on more

than one randomly selected gene makes both CDR3 regions hyper-variable.

The second source of variability occurs in a process known as somatic hypermutation.
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This process is triggered when an immunoglobulin binds to a target. Binding triggers the

B-cell to which the immunoglobulin is attached to replicate rapidly. During replication,

mutations which increase binding affinity are selected for in an attempt to boost epitope

specificity. As a result of gene segment recombination and stochastic mutations, there

exists a huge variety of CDR sequences and structures capable of binding with high affinity

and specificity to myriads of targets.

When comparing antibodies it is useful to represent the sequences such that the

conserved regions overlap and the differences between regions (which are important for

binding) can be examined. This is made complicated by occasional insertions, deletions

and variability in the CDRs which cause variable domains to have different lengths. To

solve this problem several “numbering schemes” have been proposed [123, 48, 3, 2, 69].

Based on patterns extracted through the analysis of thousands of antibodies, these schemes

assign sequential numbers to each residue in the domain based on which region of the

variable domain that residue is likely to belong. For example, in the IMGT numbering

scheme, residues in HCDR3 will be numbered from 105-117 [69].

Modern numbering schemes are based on a combination of sequence identity and

structural similarity. Early numbering schemes, such as that proposed by Wu and Kabat

[123] who first identified the high entropy regions of the variable domain, only take

sequence information into account. As the number of solved antibody structures grew,

it became possible to integrate structural information into these descriptive frameworks

[3, 69]. The location of CDRs is prone to shifting depending on data availability and

analysis techniques. These dependencies mean that there is no consensus delineation

between framework regions and CDRs and that schemes will differ in how they handle

insertions and deletions.

By using structural analysis to develop a framework aimed at highlighting differences

between antibodies, structural similarities between CDR loops were discovered. Other

than HCDR3, all CDR loops adopt a limited number of canonical conformations [3].

These canonical classes are found by clustering the CDR loops based on their structural

similarities [78, 19]. Clustering CDRs by their structural features rather than relying on

sequence similarities reveals that a region’s class is length-independent [79]. Clusters in

the structural space are mapped to the sequence space by relying on key residues which

dictate the shape of the loop [78, 3]. Therefore, the presence of these residues, despite

small changes elsewhere in the sequence, is sufficient to identify the class of the CDR.

Importantly, no canonical clusters exist for HCDR3 which makes identifying the loop’s

conformation using only sequence-level information an unsolved challenge (see Sec 1.4 for

more detail).

Furthermore, HCDR3 loops vary significantly in length. Typically, these loops comprise

3 to 20 residues [73]. However, some bovine antibodies have HCDR3 loops with more than
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Figure 1.3: Training a Transformer using Masked Language Modelling. A mask
is applied to one or many input tokens. A well-trained Transformer should output a
distribution over its vocabulary at a masked position which displays a peak at the masked
input token. Correctly guessing the most likely token at a masked position requires
understanding the surrounding sequence. The relationships between the input tokens are
captured in the model’s attention weights.

60 residues. In contrast, other CDR loops do not vary drastically in length. Each loop

has, at most, 8 unique lengths and is far shorter than HCDR3 [73].

Although the orthodox model of Ab-Ag binding claims that CDRs are solely responsible

for the antibody’s binding behaviour, this may not be entirely true. CDRs do not

correspond directly to the residues directly participating in binding (paratope). It is

estimated that only 20-33% of CDR residues are involved in Ag binding [84]. Furthermore,

there is evidence that the crystallisable fragment of the antibody also plays a role in

determining binding affinity [104]. These factors are important to keep in mind during

structure-informed design or analysis of antibodies.

1.3 Protein language models

Self-supervision is a training paradigm in machine learning which does not require labelled

data. Since large labelled datasets are expensive to produce this class of methods has

recently gained a lot of traction. In the field of natural language processing (NLP),

self-supervised models are trained on proxy tasks such as predicting the next word in a

sentence given all previous words [86, 14] or filling in masked words using the context of

the entire sentence [26]. These tasks are designed to guide the language models (LM) in

learning the statistical properties of natural languages. LM’s abilities increase with larger

training datasets [58] allowing them to take advantage of huge corpora of unlabelled text.

Next-generation sequencing has made prodigious amounts of sequence data from

ostensibly functional proteins available. Few of these sequences are well-characterised
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or have solved structures. To take advantage of the copious unlabelled sequence data,

techniques from NLP have been applied to proteins. Protein Language Models (PLMs) are

self-supervised models which learn useful representations of proteins from their sequence

data. UniRep [4] is a recurrent neural network (RNN) that learns to reconstruct sequences

sequentially, one amino acid at a time. To accurately predict the successive amino acid,

the model learns a rich, fixed-length representation of the preceding sequence. These

representations were used in predicting structural clusters as well as protein stability and

functional effects. Folding of protein domains often causes residues which are far apart in

sequence space to be proximal in 3D space. Although UniRep uses a Long Short Term

Memory (LSTM) network [64] it is limited to modelling dependencies between earlier

residues in the chain. This quirk introduced during training may result in less structurally

informative representations.

Transformers [116] are a class of self-supervised models which were introduced for

natural language processing (NLP) and have been used with great success in a broad range

of applications [55, 87]. Their main innovation is a self-attention mechanism which enables

the network to learn pairwise relationships between its input tokens. Since attention is of

central importance in my investigation it is worth describing in some detail.

Given an input set of vectors X = {x1, x2, ..., xn}, self-attention aims to find a set of

weights which model the dependencies within the set. In the version introduced by Vaswani

et al, an input vector xi is mapped, using a learnable function such as a neural network,

to a query, key and value vector where qi, ki, vi ∈ Rd. This terminology is borrowed from

a dictionary data structure where the query is used to retrieve a value based on which key

it matches. Similarity scores between the query and key value are computed using inner

products:

zij = qi · kj ∀j = [1, ...n] (1.1)

By stacking query and key vectors as rows of two matrices Q,K ∈ Rn×d, the inner

products between every query and key vector can be computed using matrix multiplication

Z = QKT ∈ Rn×n. The result is then normalised by the size of the vectors and softmax [13]

is applied such that the similarity scores, now referred to as attention weights, resemble

probability distributions:

A = softmax

(
QKT

√
d

)
∈ Rn×n (1.2)

Each weight in the attention matrix, aij, captures the dependency of xi on xj. These

dependencies are then used to generate a weighted sum of value vectors O = AV ∈ Rn×d

where a row oi will be most heavily influenced by the value vectors relevant to token i.

Many layers M of self-attention are usually applied to an input set, continuously

transforming the input tokens by incorporating information from its context. Furthermore,
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each self-attention layer is “multi-headed” where each of the H attention heads implements

the same operation but uses independent sets of weights. A transformer therefore generates

M ×H square attention matrices and a set of output embeddings E = {e1, e2, ...en} where

oi ∈ Rd.

In natural languages, there are a fixed number of possible input tokens, a vocabulary V .
Another transformation is learned which maps the output embedding at each position to a

probability distribution over that vocabulary. The distribution computed from embedding

ei should display a peak associated with the word used to generate input token xi. As

mentioned above, one method used to train transformers entails masking a percentage of

the words in the input sentence and tasking the model to predict the identity of those

missing tokens (see Fig 1.3). The idea is for the model to use the context provided by the

rest of the sequence to generate output embeddings that will be mapped to distributions

assigning high probability to the masked words. The likelihood of predicting the correct

token is, therefore, pθ(xi|X \ {xi}) where the set difference operator \ is being abused

to indicate that a token xi is masked and θ represents the model’s trainable parameters.

Through this proxy task, known as Masked Language Modelling (MLM), Transformers

implicitly learn the grammar of natural languages and are highly adept at understanding

long-range dependencies between words in a sentence [86].

Translating this technique from sentences to proteins is straightforward. Instead

of words, use amino acids, and instead of the English or Japanese lexicon use the 20

amino acids that the human body encodes as a vocabulary. Now, rather than modelling

the statistical relationships between words, the Transformer strives to understand the

relationship between each amino acid and its chain thereby learning what some [32] have

referred to as the “language of life”.

Several Transformer-based PLMs have recently been released after being trained on

vast amounts of sequence data. Many of them, such as ESM [91], ProtTrans [32] and

ProteinBERT [10] use a BERT-based architecture [26] and are trained using various

denoising proxy tasks, of which MLM is an example, to reconstruct their input sequences.

The goal of these models is to generate rich sequence embeddings that can be used

for downstream tasks such as predicting structure, or biophysical properties [88, 10].

Generative models, such as ProtGPT2 [35], are another class PLMs focused on de novo

protein design. Motivated by the success of the GPT-x [86] family of LMs, the authors used

an autoregressive training protocol, predicting the next amino acid in a sequence given the

preceding residues. Although these models show promise, the focus of the investigation

presented here is on the prior class of sequence-embedding PLMs and their relevance to

structure prediction.

During masked language modelling, a Transformer-based PLM is required to predict

the identity of a subset of masked amino acids. Consider a structural biologist given the
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same task. If they had access to the structure of the protein they would utilise their

profound understanding of the biochemical properties of each amino acid to solve the

puzzle. First, they might examine the masked positions in their 3D context to find other

residues that are close by. Given the charge, shape and other biochemical properties of

these surrounding residues, the expert would carefully pick out an amino acid to fill the

masked position that would “fit” into its surroundings maintaining stability.

Of course, a language model does not possess this expertise and it only has access to

sequence data. However, following Anfinsen’s hypothesis [5], one can assume that all of

this information is encoded in the sequence. Therefore, as it strives to improve on its

language modelling objective, through complex pattern matching, the model might learn

to extract this information. Self-attention intuitively captures the interaction of every

residue in the sequence to a query residue. In trying to predict the identity of a masked

residue an accurate map of residue-residue interactions is invaluable. Since proximity in

3D space implies that two residues interact, it should, therefore, not be entirely surprising

if some attention maps model the distances between residues. Rao et al. [89] used a simple

method to demonstrate that this is in fact the case (see Sec 2.1). As we shall see later, this

emergent phenomenon makes PLMs appealing components in modern structure prediction

pipelines.

As well as their attention matrices, PLMs derive several useful representations of a

sequence. At the final self-attention layer, a fixed-length embedding e
(i)
res ∈ Rd is generated

for each residue in the sequence at the output of the network. After being trained on

a large set of proteins, residue embeddings have been shown to capture biochemical

exchangeability [91] between amino acids. Averaging along the length dimension returns

a fixed-length sequence embedding eseq =
1
L

∑L
i=1 e

(i)
res. Analysis of sequence embeddings

have been shown to encode remote homology and protein-family alignment [91].

1.4 Review of antibody structure prediction

Rational design of antibodies requires the ability to accurately gauge binding affinity with

an antigen. However, sequence-level information is not sufficient for characterising this

behaviour. A consistent mapping between a sequence and its interaction with a given

epitope has proved challenging to define. Most CDRs adopt canonical conformations

(see Sec 1.2.2), but predicting the activity of the antibody is made complicated by the

variability of HCDR3. Despite differing in length and containing different amino acids,

HCDR3 sequences have been shown to adopt similar structures and target the same

epitope [63, 24, 92]. Furthermore, identical HCDR3 sequences embedded in different

chains can have different binding properties [24]. For all their differences, these sequences

represent functionally equivalent proteins. Therefore an HCDR3 sequence is “necessary but
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Figure 1.4: Simplified taxonomy of antibody structure determination techniques.
Some examples of techniques to solve or predict the structure of antibodies. There is a
range of experimental and computational approaches which have been used in a variety
of combinations. One category of techniques which rely on epistatic effects of mutations
makes use of deep mutational scanning and is therefore neither a purely computational
nor experimental approach. Many of these techniques are protein structure prediction
methods and were not developed for antibodies specifically. Also note that there is some
overlap between categories (for example, Cryo-EM has a large computational component)
but the placement in the taxonomy is dependent on the core component of the structure
determination technique.

insufficient” [24] to characterise binding. For this reason, when designing a biotherapeutic

a model of the structure is required to forecast antigen binding [18].

This is not unique to antibodies. The structure of all proteins is of fundamental

importance in determining their function. Unfortunately, structural information is not

readily available. Experimentally determining the structure of a protein is expensive and

time-consuming. This means that the total number of solved protein structures, antibodies

in particular, is low. Furthermore, there are even fewer experimentally solved protein

complexes. Solved complexes are desirable because, as mentioned earlier, the conformation

of a protein can change upon binding. Despite being less readily available, the bound or

holo conformation of the protein is of more interest than the protein in its apo state.

In contrast to this, the amount of protein sequence data is growing exponentially

thanks to advances in next-generation sequencing [39, 44]. With access to this wealth of

sequences, a data-driven system which can routinely predict the structure of a protein

from its sequence is highly desirable - this is often referred to as the “protein folding

problem”. The ability to quickly predict how a chain of amino acids folds will allow efficient
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exploration of sequence space [20, 49] facilitating the rational engineering of sequences

with desirable functions.

If we assume Anfinsen’s hypothesis is correct, predicting a protein’s structure from its

sequence seems entirely feasible. Anfinsen postulated that the molecule’s conformation

corresponds to a stable minima in free energy which is entirely determined by interactions

between the residues in the chain. Unfortunately, modelling this energy landscape is

combinatorially intractable. As the length of the chain increases, the number of possible

conformations that it can assume grows exponentially. Calculating the free energy of each

possible fold is simply not practical.

Several methods have been proposed to overcome these hurdles. Most computational

methods for predicting the structure of antibodies are distributed into one of two broad

categories: template-based and template-free (or ab-initio) methods (see Fig 1.4). Template-

based methods utilize a database of solved structural templates, taking advantage of

antibodies’ highly conserved structures. Template-free methods build structures ab initio

from the amino acid sequence alone. A few approaches from each of these categories

are described below. However, to contextualise the antibody-specific approaches, a brief

review of important ideas in protein structure prediction is presented.

1.4.1 Protein structure from co-evolution

Figure 1.5: Multiple sequence alignments identify contacts. For a mutation
to become persistent it cannot interfere with the function of a protein. By aligning a
query sequence with a set of similar sequences from different species, one can observe
co-evolutionary patterns. This means that residues at certain positions in the chain mutate
in step with one another implying that they might be in contact.
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Mutations are an essential component of evolution. Most mutations have a negative

effect on protein fitness and, therefore, only a small set is positively reinforced. Some

mutations can have non-independent effects on protein fitness [114, 107]. Correlated

mutations of residues at distal positions in a protein have been utilised to infer the

structure of proteins.

In an aligned protein family residues in different positions frequently mutate to-

gether [43]. Evolutionary constraints that maintain protein function can be used to explain

this behaviour. If two positions in a sequence must co-evolve for the protein to remain

functional, it is probable that these residues interact with one another (see Fig 1.5). This

interaction implies that they are proximal in 3D space. Thus, the 3D structure of a protein

leaves echoes in the evolutionary record. Several methods [43, 30, 31, 103, 57, 74, 75, 83]

have exploited this fact, using correlated mutations extracted from multiple sequence

alignments (MSAs) to predict which residues in a chain are close together. Rather than

predicting distance as a continuous value, many methods aim to predict residue-residue

contacts, a binary metric generated by thresholding distances, or distograms that bin

distances into a fixed number of ranges. Knowing which residues are proximal in 3D space

greatly constrains the number of possible conformations the molecule could adopt.

One of the main problems encountered when using correlations to predict contacts

is indirect couplings. For example, if x is coupled to y and y is coupled to z, a naive

correlation-based method would assume that x is coupled to z which might not be the

case. The network of residues which interact directly can be conceptualised as hidden

beneath the observable correlations. To overcome this, one can model the dependencies

between positions in a chain using a discrete Markov Random Field (MRF) known as a

Potts Model. Using this model, one can distinguish between direct and indirect positional

couplings. Methods such as Direct Coupling Analysis (DCA) [77] and Protein Sparse

Inverse COVariance (PSICOV) [54] fit observations from the alignment to an approximation

of the statistical model by inverting a sparse residue-residue covariance matrix. Achieving

a higher accuracy, GREMLIN [57], plmDCA [31] and the more computationally efficient

CCMPred [103], instead maximise the pseudolikelihood of the MRF. In both cases, the

direct couplings established in the statistical model are used as a proxy for residue-residue

contacts. GREMLIN’s authors found that their approach was likely to produce accurate

contact predictions when the depth of the MSA (with sequence redundancy at a maximum

of 90%̇) is greater than five times the length of the protein [57].

More recently, MSAs have been used in conjunction with deep learning to predict

contacts from co-evolutionary patterns. Rather than using expensive feature extraction

techniques such as DCA, Jones et al[53] use construct a pairwise frequency tensor as an

input feature to a convolutional neural network. To do this, they count the number of

every possible amino acid pair between every column in an alignment. For an alignment

14



with m columns and a set of 21 amino acids (20 true amino acids and a gap character),

the resulting feature has dimensions 441 × m × m. In 2018 DeepMind beat the other

competitors in the 13th Critical Assessment of Techniques for Protein Structure Prediction

(CASP13) by a significant margin. Their method, AlphaFold1 [105], used the parameters

from a regularised pseudo-likelihood trained Potts model (similar to CCMPred) as well as

features that explicitly represented gaps and deletions in the MSA as an input feature

set to their network. Rather than predicting contacts, AlphaFold1 applies a dilated [125]

convolutional residual network to predict a distogram (64 bins deep). Binned, pairwise

distances are then smoothed, parameterised according to the residues’ torsion angles and

used to optimise for those angles using gradient descent.

Two years later DeepMind repeated its success at CASP14 with AlphaFold2. The

new method, considered a breakthrough in protein structure prediction [76], trounced

its competition, achieving near experimental accuracy in the majority of cases [55] and

inspiring a new generation of methods such as RoseTTAFold [7], and AlphaFold-Multimer

which can predict the structure of protein complexes [33].

The number of innovations required to achieve such remarkable results is too numerous

to summarise in this brief review. However, the introduction of attention-based mechanisms

is important to draw attention to. The body of the AlphaFold2 network, the EvoFormer,

iteratively refines raw MSAs using axial attention while incorporating information from the

sequence’s pairwise representation (initialised using structural homologs). The modified

query sequence at the top of the refined MSA is then translated into a 3D structure using

a novel SE(3) equivariant 1 transformer. By avoiding a physics-based folding engine, the

network became end-to-end differentiable. It is important to note that raw MSAs, rather

than the complex features derived from MSAs used in AlphaFold1, were used as a primary

input to the AlphaFold2 network. This choice was validated in an ablation study (see

Supplementary material, Sec 1.13 for [55]). According to their own analysis, the accuracy

of their model decreased substantially with an MSA depth lower than 30 sequences [55].

Therefore, in step with GREMLIN, AlphaFold2 and its related methods benefit from

high-quality, deep MSAs.

This shortcoming may indicate a prerequisite for any method which relies on MSAs to

extract co-evolutionary information and is of particular importance for antibody structure

prediction. Orphan proteins, by definition, lack known homologs. Antibodies are often

grouped together with orphan proteins because they evolve quickly and independently

according to the suite of pathogens an organism is exposed to. Sequence databases do not

1SE(3) is the “special Euclidean” group of distance-preserving transformations, such as rotations and
translations, in 3D space. If a model is not SE(3) equivariant, two identical molecules in different poses
would induce entirely unrelated internal representations. The model essentially treats them as different
molecules. These symmetries are essential to take into account if training an end-to-end differentiable
network.
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contain homologs for the most variable regions of these sequences. MSAs, therefore, do not

capture the protein’s evolutionary progression and may not provide useful co-evolutionary

information.

Recently it was suggested that AlphaFold2, RosettaFold, and other structure prediction

tools which rely on deep learning do not understand the underlying physics of protein

folding [82]. The jump in performance is therefore attributed to successfully leveraging

the statistical properties observed in the training dataset. In scenarios where the statistics

differ from the training proteins, such as antibody structure prediction, it is possible that

these methods will be less successful.

Although PLMs (see Sec 1.3) traditionally are trained on single sequences to extract

patterns across protein families, AlphaFold2 is not the only Transformer-based method that

uses sets of aligned sequences as input. The aptly named MSA Transformer also abandons

this convention. Axial attention [47] is alternatively applied along the row and column

dimensions of the alignment. Supporting their hypothesis that the homologous sequences

should share structural features, the authors found that sharing an attention map across all

rows (for all sequences), what they termed tied-row attention, boosted performance. The

MSA Transformer does not predict 3D structure but can be used for contact prediction

according to the procedure introduced by Rao et al. [89] and elaborated on in Sec 2.1.

Even for sequences with few (< 100) available homologs the MSA Transformer outperforms

state-of-the-art single sequence PLMs, as well as a best-in-class Potts model at contact

prediction.

1.4.2 Homology modelling techniques

Because antibody conformations are highly conserved, there are many methods which

rely on grafting together previously solved fragments based on sequence similarities. This

is an example of template-based structure prediction, known as homology modelling.

Relevant templates are chosen based on their similarity to the target sequence. Some

online services using this technique include PIGSpro [70], Kotai Antibody Builder [124],

and ABodyBuilder [67].

Homology modelling is capable of generating structures which are accurate (RMSD<

1Å) in highly conserved regions [99]. The difficulty arises when modelling hypervariable

regions of the antibody (VH and VL) which lack high-quality templates.

Fragment assembly methods generally follow a four-stage workflow [67, 63]. First, a

template structure is chosen based on its sequence’s similarity to the target sequence.

This template can include both VH and VL or can be generated using separate templates

for VH and VL [67]. For these hybrid templates, the orientation between VH and VL

is determined in the next stage. Due to their high variability, template structures are

usually incapable of accurately modelling CDRs. In an effort to overcome this shortcoming,
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Figure 1.6: Sequence-level similarity does not represent structural similarity.
By visually comparing pairs of aligned VH chains from SAbDab [29], one can appreciate
that high sequence identity (SeqID) in complementarity-determining region 3 (HCDR3)
does not imply similar structure. These highly illustrative pairs of chains were identified by
Kovaltsuk et al. [63]. Structural disparities are reported as a root mean squared difference
(RMSD). Mismatched amino acids in the sequences are highlighted in yellow. A The
variable domains of 4s1s (blues) and 4nzu (pinks) are overlaid and the sequences of the
HCDR3s are included below. Despite a blatant mismatch in sequence space, the HCDR3
loops are highly aligned (RMSD ≈ 1Å). B Same as A, but 3U7W (pinks) is compared to
4JDV (blues). In this case, the sequences are almost identical but the shapes of the loops
are distinct (RMSD > 2Å).

homology modelling techniques search through several CDR-specific databases, replacing

these highly variable regions in the template with the most similar structures found.

Finally, the side chains rotamers of residues which differ between the target and template

are predicted.

If a template structure is available, homology modelling can generate structures fast.

However, their weakness lies in their dependence on the availability of similar template

structures. This is especially problematic for longer HCDR3 loops [73]. Structural accuracy

is usually evaluated using the Root Mean Squared Deviation (RMSD) between the backbone

atoms of the solved and predicted structures. Sub-Angstrom RMSD is considered perfect,

where short sequences with an RMSD > 2Å are structurally distinct. Framework regions

and canonical CDRs can usually be predicted to within 1.5Å where HCDR3’s predictions

are often more than 3Å away from the native structure using these methods [63]. Even

17



in cases where homologs are present, sequence similarity does not always correspond to

structural similarity (see Fig 1.6).

1.4.3 Predicting antibody structure in the absence of homologs

For proteins which lack known homologs, such as orphan and de-novo designed proteins, it

seems that models like AlphaFold are inherently handicapped by their reliance on MSAs.

Similar to orphan proteins, antibodies evolve independently and are somewhat isolated

from the evolutionary record. Furthermore, because HCDR3 loops are hypervariable,

MSAs tend to be noisy in those regions [122]. Unlike the methods presented in Sec

1.4.1, some structure prediction techniques, including antibody-specific approaches, eschew

MSAs, often in an effort to take these edge cases into account.

Mutations occur naturally in the evolutionary record but, with the advent of genetic

engineering, they can also be artificially introduced. By introducing mutations at every

position in a protein sequence and observing mutations that have non-independent effects

on the protein’s fitness, it is also possible to elucidate residue-residue contacts. Deep

Mutational Scanning (DMS) [37] is an experimental technique in which large libraries

of mutants are functionally assessed. A library of double mutants (two positions are

mutated in each sequence) can then be used to investigate the energetic couplings between

positions. Using the same principle as co-evolutionary analysis, mutations which exhibit

strong epistatic effects [107] are likely to indicate structural proximity. A number of recent

techniques [102, 93] illustrated that epistatic interactions found using DMS are sufficient

to construct accurate ( < 1.9Å RMSD) models of protein structures without requiring

many homologous sequences. Such experimental methods are resource intensive requiring

DMS of each protein or domain. Furthermore, they rely on in vitro or in vivo selection

assays which may not be available if a protein’s function is not known. Regardless, for

antibodies, which have well-established selection assays, DMS is an interesting alternative

to purely computational approaches.

To overcome the shortcomings of homology modelling (see Sec 1.4.2) a host of methods

have attempted to use deep learning to predict the structure of antibodies. Because

there is rarely relevant evolutionary history available for HCDR3 loops, MSAs are os-

tensibly ineffective at predicting their structure. DeepH3 [96], a method that does not

use any coevolutionary information, employs 1D convolutions to predict the distances

and orientations (a set of dihedral angles) between residues in HCDR3 using the concate-

nated, one-hot-encoded heavy and light chain sequences as input. These predictions were

converted to geometric potentials which are used to constrain an energy minimisation

protocol that generates a 3D conformation for the HCDR3. The method was also used

to differentiate between native and decoy HCDR3 sequences. DeepAb [99] builds on the

groundwork of DeepH3 as well as the success of UniRep [4], a recurrent neural network
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(RNN) that learned useful representations of protein sequences. The authors pretrained

an RNN-based autoencoder on a large ( > 100, 000) set of sequences from the Observed

Antibody Space (OAS) [80]. Sequence embeddings are then generated by concatenating

the encoder hidden states for each residue. To train the structure prediction module they

combine the representation generated by the 1D convolutions, similar to DeepH3, with the

representation generated by the pretrained encoder. A residual, 2D convolutional network

combined with six separate attention heads utilise the combined representation to predict

six geometric features. Once again using a Rosetta-based energy minimisation method to

generate structures from the predicted geometric potentials, DeepAb outperformed the

state-of-the-art in antibody structure prediction.

Neither DeepH3 nor DeepAb can be trained end-to-end. This means that they cannot

be trained directly on the atomic coordinates of known proteins. In contrast, AbLooper [1]

is an end-to-end CDR structure prediction tool. To achieve this, they used an equivariant

graph neural network [100] making their method SE(3) equivariant. After generating

predictions for the CDR loops, ABodyBuilder [67] is used to construct a complete model

of the protein, incorporating the loop predictions. AbLooper matches the performance of

AlphaFold2 and DeepAb while being substantially faster.

Another end-to-end method focussed on speed is Nanonet - a nanobody 2 structure

predictor [23]. Taking advantage of the highly conserved framework regions, the 2,000

training structures were aligned to an arbitrarily chosen reference frame thereby achieving

translational invariance. Rather than using a complex equivariant graph-based method,

this “trick” allowed the authors to use a relatively simple 1D convolutional neural network

(CNN) to predict Cα coordinates directly (side chains are not modelled). When tested on

heavy chains of antibodies, NanoNet achieves similar performance to DeepAb.

PLMs (see Section 1.3), which learn informative representations from single sequences,

are a promising avenue to exploring poorly characterised regions of protein space. These

models learn from common patterns in their input sequences. Understanding which amino

acid goes where is similar to learning substitution probabilities. This can be thought of as

the model learning evolutionary constraints, previously extracted from MSAs, based on

the data that it has observed. At inference time, the inferred co-evolutionary context for a

sequence is only available through the model’s learned parameters. PLMs have been shown

to capture structural information in their attention matrices (see Sec 1.5.1). Encouraged

by these findings, and the time saved by avoiding searching through sequence databases

to build an alignment, PLMs have become popular components of 3D structure prediction

pipelines. ESM [91] gave rise to ESMFold [71], ProtTrans [32] enabled EMBER [119],

OmegAPLM opened the door for OmegaFold [122] and AminoBERT facilitated RGN2

[20]. Even though these models do not use MSAs, their performance tends to decrease on

2Nanobodies, common in camelid immune systems, are heavy-chain-only antibodies.
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sequences which have few homologs [90, 71]. Because they are trained on a general set of

proteins, usually from UniRef50 [108], I refer to them as general-PLMs (GPLM).

In an effort to better model the biophysical properties of antibodies, another set of

recent PLMs, such as AntiBERTy [97], AntiBERTa [68] and AbLang [81] were trained

only on antibodies from OAS. I refer to these models as antibody-PLMS (APLM). These

models were created for antibody-specific tasks. For example, AntiBERTy was initially

used to predict evolutionary trajectories of antibodies and later incorporated into a fast

and accurate antibody-specific structure prediction network IgFold [98]. AbLang was

shown to restore missing residues in sequences from OAS more accurately than ESM-1b

[81]. AntiBERTa was better able to distinguish between naive and memory B-cell receptors

(BCR) 3 than a ProtBERT, a GPLM, and showed a propensity to focus its attention on

putative paratope residues [68].

Despite not directly using MSAs, PLMs seem to indirectly capture co-evolutionary

relationships between positions by observing patterns in sequence data. If this is the

case, the prediction accuracy for HCDR3 sequences remains limited by the number of

neighbouring sequences in the training dataset.

1.5 Previous work analysing PLM features

1.5.1 PLMs as self-supervised structure learners

A structural evaluation of PLMs is not straightforward since these models output a set

of residue embeddings rather than a fully realised 3D dimensional structure. Structures

can, however, be represented in two dimensions as well. A distogram, D ∈ RR×R, is

a square, symmetrical matrix comprising the distances between the R residues in a

sequence. Although this representation does not capture dihedral angles between the

backbone residues, distograms have been used as input to energy minimisation algorithms

to faithfully recreate 3D conformations [99, 105]. By setting a threshold in separation in

3D space (teuc) and a minimum separation in sequence space (tseq), distograms can be

used to determine which residues are in contact with one another. Rather than expressing

the distance between residues as d(Ci
β,C

j
β), to take glycines into account, it is convenient

to simply write d(i, j). Contacts are therefore defined according to:

cij =

1, if d(i, j) < teucÅ and i− j > tseq

0, otherwise
(1.3)

Applying this rule to a distogram, one derives a contact matrix C. Knowing which

residues are in contact with one another greatly constrains the space of possible conforma-

3B-cell receptors are immature antibodies bound to the surface of B-cells.
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tions. Precise contact maps have proved helpful in, among other applications, accurately

modelling de novo structures [60, 62, 74, 119, 83]. For this reason, contact prediction

has been enshrined as CASP benchmark and a standard metric for comparing structure

prediction methods [88].

Given a transformer with L layers and H heads, a forward pass over a sequence of

R residues will generate a stack of N = L ×H attention maps. Each attention matrix

An ∈ RR×R where n = {1...N} is square but not symmetrical. Since the Euclidean distance

between two residues is symmetrical, d(i, j) = d(j, i), the attention matrices must be

symmetrised. This is trivially accomplished by adding the transpose of each matrix to

itself: Sn = An + An
T .

Dunn et al. introduced an efficient method to estimate and remove background mutual

information (MI) between pairs of residues in a protein family [30]. MI is relevant to

contact prediction since it explicitly captures the dependence of one position on another.

Given that two residues are in contact, knowledge about one greatly reduces the uncertainty

in identifying its partner. High MI between two residues is, therefore, an indication that

those positions might co-evolve and be in contact with one another. However, this signal

can be corrupted by shared ancestry, other structural and functional constraints, and

random noise [6]. This is especially relevant when dealing with a CDR since positions

with higher entropy tend to have higher levels of random MI [36]. Given an aligned set

of sequences from a protein family, found using multiple sequence alignment, Dunn et al.

estimate the background MI between positions i and j in the sequence using a term they

call average product correction (APC).

APC(i, j) =
MI(i, x̄)MI(j, x̄)

MI
(1.4)

Where MI(i, x̄) is the mean mutual information between column i and all other

columns and MI is the overall mean MI.

One can build a coupling matrix M ∈ RR×R from MI values, where M(i, j) = M(j, i)

represents the MI between two positions. Since values in this matrix represent how

informative position i is to position j Rao et al. argued that it is highly similar to an

attention matrix [88]. Therefore, Equation 1.4 can be applied to every pair of positions

in each symmetrised attention matrix to find background correlations between positions.

The background can then be removed yielding a “corrected” attention matrix, Fn. This

can be expressed using vector notation:

Fn = Sn −
(Sn1)(Sn1)

T

1TSn1
(1.5)

Finally, the corrected contact matrices can be combined into a single coupling matrix

which can be interpreted as a contact map (Fig 2.1). However, Vig et al. [118] found
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that attention heads in particular layers tend to display a disproportionate correlation to

distances between residues. Therefore, some attention maps need to be weighted more

highly than others. To determine which maps are most important to predicting the contacts

between residues, Rao et al. [89] proposed fitting an L1-regularised logistic regression

model to a small set of known structures. If D is a set of solved proteins, regressing a

logistic regression model to this set of structures will determine an optimal set of weights

β ∈ RN+1 to modulate the importance of a PLM’s attention matrices. Given a model with

N = L×H attention maps, after featurising the sequence of d ∈ D, the model estimates

the probability of residues i and j being in contact as:

p
(
cijd |β

)
=

(
1 + exp

(
−β0 −

N∑
n=1

βnFn
ij

))−1

(1.6)

Since residues which are close together in sequence space are trivially proximal in

Euclidean space, a sequence separation threshold k is introduced. The likelihood of

observing the (non-trivial) contacts in the training set is, therefore:

L(D|β) =
∏
d∈D

Ld−k∏
i=1

Ld∏
j=i+k

p
(
cijd | β

)
(1.7)

I then use scikit-learn [85] to solve the following optimisation problem:

β̂ = max
β

L(D|β)− 1

λ

N∑
n=1

|βn| (1.8)

Where λ is a regularisation hyperparameter that encourages the combined magnitude

of weights to be minimal. This results in a large percentage of the weights being close

to zero, thereby identifying a sparse set of attention heads which have learned to reason

about the distances between residues.

1.6 Motivation

It would seem that the trajectory of the antibody design field is gravitating towards the

widespread use of PLMs. These self-supervised models, trained on large databases of

protein sequences, are capable of generating informative features from single sequences

[68, 32, 118] and their self-attention mechanism is surprisingly proficient at capturing

structurally relevant relationships between residues [118, 98, 71, 122]. However, as is the

case with all large language models, clear explanations for their internal representations

are not immediately forthcoming. It can be difficult to interpret the how and why behind

a model’s outputs. Therefore, if the aim is to featurise a library of sequences, it remains

challenging to choose a featuriser which offers the desired feature properties.
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Standardised testing exists to compare structure prediction methods. Since 1994

scientists have participated in the bi-annual Critical Assessment of protein Structure

Prediction (CASP) competition. Intended to incentivise progress in computational methods

to predict protein structure from sequence, contestants compete to predict the structures

of a set of previously unseen proteins. Predictions can be submitted in three formats: as

atomic coordinates, pairs of residues in contact, or an assessment of their model’s accuracy

on the task.

To my knowledge, no extensive or standardised analysis exists to assess the capabilities

(or potential lack thereof) of PLMs as featurisers of antibody sequence data. Since

structural information is valuable to the rational design of antibodies, it seems fitting to

base this analysis on a PLM’s ability to reason about the structure of an antibody despite

only having access to sequence-level data.

Attention matrices of transformers naturally represent relationships between residues.

Some have postulated that this relationship is structurally informed [118, 91]. Furthermore,

Rao et al. [89] demonstrated that contacts between residues can be readily extracted

from attention weights (see Sec 1.5.1). However, this analysis was not targeted at an-

tibodies. Therefore, using contact prediction as a proxy for structural understanding,

this investigation aims to answer fundamental questions such as: Are PLMs trained on

antibody sequences preferable to PLMs trained on a general set of proteins for antibody

structure prediction? Is it possible to finetune a PLM trained on a general set of proteins

to improve its performance when dealing with antibodies? Can PLMs be used to reason

about CDR regions, and thus the binding modes of a sequence? And, does the perplexity

of the antibody sequence correlate with how successfully the model captures structural

information?

1.6.1 Contact maps for antibody design

Recently, it has been demonstrated that distograms, rather than 3D structures, can be

used as a tool in protein design. Verkuil et al. [117] tested PLM’s ability to generalise to

unexplored regions of protein space using two experiments: fixed backbone design which

aims to find a sequence which folds into a predetermined structure; and free design where

the sequence and structure are both allowed to vary.

These experiments did not focus on antibody design. A PLM which can generate

precise distograms or contact matrices for antibodies might, therefore, be invaluable in

designing antibodies which bind to a known target using fixed-backbone design. It is

therefore directly valuable to the design of therapeutics to determine which PLMs are

most successful at this task.
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Chapter 2

Evaluating PLMs as antibody

structure predictors

Pretrained PLMs are evaluated based on their innate ability to represent the structural

features of antibodies. These featurisers vary in their architecture, pretraining, and, in

cases where MSAs are utilised, the method by which the input sequences are found. Three

categories of PLMs are considered: PLMs pretrained on single antibody sequences (APLM);

PLMs trained on single sequences of general proteins (GPLM); and a PLM trained using

MSAs of general proteins (MSA-PLM).

In all cases, using the procedure outlined in Sec 1.5.1, contact predictions are extracted

from the PLM’s attention maps. Each model in the evaluation comprises a featurising PLM

and a contact prediction head (CPH). These composite models are uniquely identified using

the naming convention <featuriser> → <contact-prediction-head>. As described

in Sec 1.5.1 analyses presented in this chapter limit the CPH to regularised logistic

regression. By using a low-complexity model to map attention matrices to contacts, the

precision of the prediction will depend on information already present in the PLM’s internal

representations.

Thresholds defining a contact between residues (see Equation 1.3) are not standardised.

For the purpose of this investigation, two residues are considered to be in contact if they

are separated by at least six residues in sequence space (tseq < 6), and the Euclidean

distance between their Cβ (Cα for glycine) atoms is less than 8Å (Fig 1.1).

To understand how PLM performance translates from the context of general proteins

to that of antibodies, a set of evaluation metrics, presented in order of difficulty and are

increasingly more antibody-focussed, are used to compare the featurisers.
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Figure 2.1: Contacts from attention. Contact prediction can be used to compare sequence-
featurising tools known as Protein Language Models (PLMs) to determine which tool understands
the structure of a given sequence best. To accomplish this, after featurising a sequence, the
self-attention maps are extracted from the PLM. This stack of matrices is minimally processed.
Each is symmetrised and has the average product correction (APC) value removed [30]. Contacts
between the residues in the sequence are then predicted using a weighted sum of these maps.

2.1 Data

Measuring the accuracy of contact predictions requires solved antibody structures. SAbDab

[29] is a data curation tool which searches through proteins in the Protein Data Bank

(PDB) [9] and extracts antibodies. All of the files, therefore, follow the PDB’s conventions.

Ideally, each file contains the coordinates of all atoms in the antibody’s heavy and light

chains and, occasionally, a matching antigen as well. Conveniently, SAbDab provides

sequences pre-numbered using ANARCI [28] according to the IMGT standard (see Sec 1.2.2

for an explainer of antibody numbering). This enables relatively simple alignment of

antibodies of different lengths.

Many of the antibodies are crystallised without their antigen counterpart (these are

known as apo structures). Because proteins are not always rigid, the apo structure can

differ substantially from the holo-structure (the conformation of the bound antibody) [21].

Ideally, the dataset would only comprise holo-structures since these represent the true

binding conformation of the protein.

All structures made available via the SAbDab online portal as of 08/11/2022 were

downloaded. To ensure minimal redundancy in the dataset, a subset of these structures

was extracted where each sequence has a maximum of 90% sequence similarity (sequence

identity) with other structures in the set. Furthermore, filtering out structures with a

resolution lower than 3 Å was required to curate a high-quality evaluation dataset.

Most modern structure prediction tools can rival experimental methods when predicting

framework regions and CDRs H1, H2, L1, L2, and L3. Since HCDR3 has no canonical

conformations and is highly variable, accurate predictions in this region are not trivial. To
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PLM
Training dataset Model Details

Ab only No. Seq Source Arch Params Layers×Heads

DeepAb [99] ✓ 118 Th OAS LSTM 6 M -
AntiBERTy [97] ✓ 558 M OAS BERT 26 M 8×8
AbLang (h) [81] ✓ 14 M OAS RoBERTa 86 M 12×12
AntiBERTa [68] ✓ 58 M OAS RoBERTa 86 M 12×12
UniRep [4] x 24 M UniRef50 LSTM 18 M -
ProtT5-XL [32] x 45 M UniRef50 T5 3 B 24×32
ProtBERT [32] x 216 M UniRef100 BERT 420 M 30×16
ProtAlbert [32] x 216 M UniRef100 ALBERT 224 M 12×64
ESM-1b [91] x 27 M UniRef50 BERT 650 M 33×20

Table 2.1: Comparison of a few self-supervised PLMs. Most of the transformer-based
models are based on an encoder-only architecture known as BERT [26] (Bidirectional
Encoder Representations from Transformers). RoBERTa [72] (a Robustly Optimised
adaptation) tweaks the training procedure of BERT while AlBERT [66] (a lite BERT)
uses parameter sharing and lower dimension representations to dramatically reduce the
number parameters required to achieve SOTA performance. All of these methods are
trained using masked language modelling (MLM). In contrast, autoregressive models such
as LSTMs [40] and the T5 transformer have an encoder-decoder architecture. The number
of proteins used for pretraining models can vary even when sourcing data from identical
sources. This could be the result of sampling from the dataset to set aside an evaluation
dataset, or simply a function of data being collected from the online repository at different
dates.

use HCDR3 as a benchmark for contact prediction requires all PDBs to contain complete

heavy chains. Files that exclude the heavy chain are therefore removed from the dataset.

Since they are rare, chains with HCDR3s longer than 13 residues are also excluded.

Additionally, any single chain variable fragment (SCFv) 1 entries are ignored since they

require special handling and are exceptionally rare after the other filters have been applied.

Imperfections in the crystallisation of proteins make the precise location of some atoms

impossible to determine. Due to these experimental complications, PDB files are often

incomplete. Errors such as these have been shown to cause inaccuracies in structural

modelling tasks [111]. In cases where a backbone atom or entire residue is missing, it is

not possible to describe the chain’s complete structure accurately. Since this information

is critical to maintaining a dependable ground truth, every chain must be meticulously

inspected in order to exclude erroneous files.

Unless otherwise stated, the remaining 1942 antibodies are used throughout the analysis.

1A single chain variable fragment (SCFv) is an engineered chain comprising the variable regions of
the heavy and light chain fused together. Encapsulating the binding region in a single chain makes
manufacturing the antibody more convenient.
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2.2 Evaluation using standard metrics

The CASP competition served the invaluable function of setting benchmarks for protein

structure prediction. One of the metrics used to evaluate the quality of predictions is the

precision of the predicted contact map. This section interrogates a number of PLM-based

contact predicters using these standard metrics.

2.2.1 Methodology

ESM-1b is a BERT-based [26] language model trained on 27 million representative sequences

from UniProt [112], the vast majority of which are not antibodies. To examine how well a

PLM trained on a general set of proteins (GPLM) was able to predict contacts between

residues in an antibody, sequences from SAbDab were used to train the contact prediction

network and evaluate its performance. Following the procedure in Sec 1.5.1, regularised

logistic regression is used to predict contacts from processed attention matrices. This

network is referred to as a contact prediction head (CPH). A random sample of antibodies

is removed from the set of 1942 solved structures (see Sec 2.1) and is used to fit the logistic

regression predictor. To distinguish it from the pretraining dataset, this dataset is referred

to as a transfer learning training dataset (TLTD). The remaining antibodies are used as a

test dataset.

The usefulness of predicted contacts depends on their precision [53]. A high false

positive rate could place additional constraints on the protein’s conformation that result in

an egregious final fold. Furthermore, false negatives may not be of the utmost importance

since it has been demonstrated that a relatively small fraction of contacts can reliably

produce accurate topology-level structures [60]. It is therefore common [88, 101, 60, 31] to

evaluate contact prediction on the precision of a reduced set of highly confident predictions.

Precision on the L, L/2, L/5 most probably contacts is calculated where L represents the

number of residues in a chain. Adopting the standard notation for these metrics, they are

subsequently reported as P@L, P@L/2, P@L/5 respectively.

P@L =
TPtop-L

TPtop-L + FPtop-L

(2.1)

It is sometimes desirable to distinguish between the contact precision between residues

at constant separations in sequence space. Based on the separation between two residues

i, j contacts can be classified into three non-overlapping ranges which are most relevant

to the tertiary structure of proteins [101]: short-range where 6 ≤ |i − j| < 12; medium

range where 12 ≤ |i− j| < 24; and long-range where 24 ≤ |i− j|.
Choosing the size and character of the training set which is used to fit the logistic

regression contact predictor offers a range of hyperparameters that can be tuned. To
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determine the effects of regularisation, and the size of the training dataset, some exploratory

experiments were run using ESM-1b [91], a state-of-the-art single-sequence PLM at the

time of writing, as a featuriser (see Sec 2.2.2).

Another important contributing factor is the composition of the pre-training dataset.

Sec 2.2.3 uses the standard measures of contact precision to compare featurisers trained on

different sets of proteins. Of particular interest is the contribution made by a pretraining

dataset exclusively comprising antibodies.

2.2.2 Regularised regression on a set of antibodies improves

performance

TLTD size has a minor effect Varying the size of the random sample used for training

to CPH (for each size the experiment is repeated with five random samples) demonstrates

that precision reaches a plateau above a sample size of 20 (Fig 2.2A). This echoed the

findings of Rao et al. [89] when predicting contacts on a general set of proteins. Therefore,

unless otherwise stated, subsequent experiments can be assumed to use 20 randomly

selected Abs from the curated set of 1942.

Regularisation strength has a minor effect To test the effect of regularisation

strength on precision and sparsity 2 , logistic regression models were fit to a random set of

20 antibodies (resampled five times for each value of λ) while varying these parameters.

The effect of regularisation strength on precision is unpronounced with precision slowly

dropping as the strength increased (Fig 2.2B). As expected, increasing the regularisation

strength coerces a larger percentage of the learned weights to tend towards zero (Fig 2.2C).

The self-attention heads which are picked out by the model as being most important to

predicting contacts are concentrated in the final layers of the transformer. This seems to

indicate that a sparse set of attention maps, collected from deeper layers of the network,

is sufficient to precisely predict contacts. Having observed a similar result, Weissenow

et al. [119] discarded most of the attention matrices from ProtT5 [32] and used only 50

attention matrices as features for downstream structure prediction.

Check for sampling bias If the training dataset is highly similar to the test dataset,

results are bound to be biased. After filtering the combined test and train dataset to

only comprise representative sequences with a maximum of 90% sequence identity, high

sequence similarity between test and train sets is not likely. However, it is important

to ensure that the precision of the contacts predicted for a sequence is independent of

the similarity between the sequences in the test and train sets. An alignment score is

2Sparsity in this context is used to refer to the ratio of zero to non-zero learned parameters.
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Figure 2.2: Training a logistic regression model to predict contacts from raw attention
maps extracted from ESM1-b. A Effect of increasing the number of antibodies used to
train a logistic regression model on the precision of its contact predictions. B Effect of changing
the regularisation strength (L1-regularisation) on precision. Increased regularisation encourages
sparsity. Eventually, as fewer attention maps are considered in an increasingly sparse network,
the precision decreases. C The learned weights at varying regularisation values are visualised as
a sequence of grids accompanied by the trend in the fraction of ignored attention maps (learned
weight of 0). The sparsity of the important attention heads increases with regularisation with a
greater focus on deeper layers in the network. D Testing the dependence of contact precision
to sequence similarity among training sequences. The precision of predicted contacts on test
sequences is plotted against the maximum alignment score to the training dataset for each
sequence in the test dataset.
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generated between each of the 1922 sequences in the test dataset and the 20 sequences

in the train set. Sequences are globally aligned using Biopython.pairwise2 [22] and

the BLOSUM62 substitution matrix [46]. For each of the test sequences, the maximum

alignment score is visualised against its contact prediction precision in Fig 2.2D. This is

repeated for the top-L, top-L/2, and top-L/5 predicted contacts at short, medium, and

long ranges. Of these nine combinations all are negatively correlated to the alignment

score with Pearson correlation coefficients ranging from -0.32 to -0.02. There is, therefore,

no positive correlation between the precision of the predictions and the similarity to the

training dataset sequences.

A TLTD comprising only antibodies boosts precision ESM was not specifically

developed for use in antibody design. Rather, its designers trained the network on a

massive set of general proteins in the hopes that diversity would enable the model to

generalise into unseen regions of protein space. In a single forward pass on an antibody

heavy chain, GPLMs, such as ESM, might extract many features of which only a subset are

useful to antibody structure prediction. It is possible to identify which attention maps are

most relevant using L1-regularised logistic regression (LR). Rao et al. [89] released weights

for their LR model which was trained to predict contacts from the features of ESM-1b

by regressing against a general set of proteins. ESM-1b→LR⋆ refers to this composite

model where the ⋆ indicates that the LR head is “pre-trained” and was not tuned to the

structure of antibodies. The precision of this model’s predictions is a useful benchmark

against which one can compare a CPH trained on antibody structures.

By regressing against the TLTD, comprising exclusively of antibodies, rather than a

general set of protein structures a CPH is better able to pick out the most important

attention maps. The resulting long-range contact predictions are 16% more precise (see

the comparison of ESM-1b→LR and ESM-1b→LR⋆ in Fig 2.3). Clearly, transfer learning

on antibodies rather than general proteins is more suitable to pick out the transformer’s

most useful attention maps.

2.2.3 Pretraining on general proteins rather than antibodies

Language models are flexible tools which, after being trained on a large dataset, can be

applied to myriad downstream tasks. Since, in this case, the downstream task is assumed

to be structure prediction, it is important to identify a pretraining tactic which is likely to

enable accurate results. Possibly the most important component of a pretraining strategy

is the data. I, therefore, compared several transformer-based language models pretrained

on different datasets.

Since antibodies are distinct from general proteins in many ways, it seems intuitive

that a PLM pre-trained on only antibodies (APLM) would be better equipped to handle
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Figure 2.3: Comparison of different protein language models as contact predictors.
Blue-green hues represent language models trained on antibodies, while orange-purple hues
represent those trained on a generic set of proteins. The first, middle and last columns represent
the precisions for short-range, medium-range and long-range contacts. A Precisions (P@L,
P@l/5) where predictions were made by fitting a regularized logistic regression head. P@L/2 is
not shown to rather focus on a wider variety of models. B Same as B, but repeated using several
random test train splits. In this case, P@L/2 is included. C To detangle the effects of the logistic
regression model, the top-performing models’ attention matrices were simply summed across the
layers × heads dimension to predict contacts. D To avoid only observing the precision on the
models’ most confident predictions, the area under the precision-recall curve is also reported. E
Scaling laws for protein language models (ESM was retrained at several scales).
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domain-specific quirks. There is evidence that, for certain downstream tasks, this might

be the case. Sequence-embeddings from APLMs seem to cluster more strongly around the

antibody source (human, murine, humanized, chimeric) than those generated by GPLMs

[68]. Using a similar analysis, Olsen et al. [81] found that both AbLang and ESM1-b are

able to identify the heavy chain’s V-gene family but that clustering according to B-cell

maturity is stronger for the APLM. Furthermore, they found that AbLang was better

equipped to accurately restore sequences with missing residues.

Although useful, these abilities do not imply that APLMs extract more structurally

relevant features than their general counterparts. To directly compare their ability to

reason about immunoglobulin structure, the models’ attention matrices are used to predict

residue-residue contacts (as per the method described in Sec 1.5.1). A low-complexity

model (L1-regularised logistic regression) is intentionally used to predict contacts since

the goal is to ascertain the amount of structural information that is captured after self-

supervised training. Using a more advanced pattern-matching algorithm as a CPH would

make the benefit of the PLM difficult to isolate. For each featuriser, a logistic regression

(LR) head is trained to predict contacts from its attention matrices using the same set of

20 solved antibodies. The remaining 1922 antibodies are used as an evaluation dataset to

quantify the precision at short, medium and long ranges. The composite models compared

in Fig 2.3A are chosen to disentangle the effects of several potentially confounding factors.

Check for sampling bias To check for sampling bias in the TLTD, five randomly

sampled sets of 20 antibodies are used to retrain the CPHs. Once again, the remaining

set of 1922 proteins is used for evaluation. Results from the five rounds of re-sampling

and evaluation are presented in Fig 2.3B. The final precision score is stable despite the

different training datasets.

Setting a Benchmark Randomly initialised networks can generate useful representa-

tions for downstream tasks [51]. To ensure that pre-training the transformer does impart a

boost in precision an untrained language model, RoBERTa• (where the • indicates random

initialisation), is used as a baseline.

GPLM > APLM When using an LR head trained on Abs, GPLM outperforms APLM.

ESM-1b and ProtT5 (state-of-the-art GPLMs) surpass AbLang and AntiBERTy (state-

of-the-art APLMs) as well as AbBERTa (an APLM trained by the Machine Learning

Research team at Bayer). Using these metrics, GPLMs consistently deliver, at minimum,

a 2x performance boost.

Against the benchmark of ESM-1b→LR⋆ APLMs underperform. This is surprising

since the structure of immunoglobulin is highly conserved and an LR model tuned to

predict those common contacts is at a clear advantage. This may imply that the features
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extracted by GPLM are richer with structural information. Indeed, when using these

features combined with a contact prediction head trained on Abs, the precision significantly

improves over the benchmark. Since, for a given sequence, the attention maps being used

by ESM-1b→LR⋆ and ESM-1b→LR are identical, one can assume that the LR model

simply identifies which of these attention maps are most relevant to the structure of

antibodies rather than proteins in general.

Considering capacity Language model performance follows a set of empirically de-

termined scaling laws [58]. Performance scales with training data, model capacity (see

Fig 2.3E), and train compute. ProtT5→LR is the largest model under evaluation. ESM-

1b→LR performs similarly but is substantially larger than the APLMs. Rives et al. [91]

released several versions of ESM by varying the number of trainable parameters. Therefore,

a smaller version of ESM-1b, containing around 43M parameters is also evaluated. By

approximately matching the model sizes, APLMs and GPLMs can be more fairly compared.

ESM-1b-small→LR⋆ appears to have difficulty in predicting short-range contacts, barely

surpassing the performance of the randomly initialised benchmark. However, at longer

ranges, its performance exceeds the most proficient APLM. Another version of ESM con-

taining 85M trainable parameters, ESM-1b-med→LR⋆, substantially outperforms almost

identically sized APLMs (see Fig 2.3E) even without its CPH being tuned to the structure

of antibodies. As expected, retraining the contact prediction heads of ESM-1b-small→LR

and ESM-1b-med→LR on Abs boosts their performance significantly. Once tuned to the

structure of antibodies both of these models exceed the capabilities of the APLMs. These

trends indicate that given more data and endowed with more trainable parameters, APLMs

would improve but still would not match the precision of equivalently sized GPLMs.

Large GPLMs, with more attention maps, also provide their LR head with extra

degrees of freedom providing an unfair advantage over the smaller APLMs. To remove this

effect, the absolute values of every element in the processed attention maps are computed

abs : Fn → F
|·|
n and they are summed along the N = L×H dimension:

∑N
n=1 Fn

|·|. Note

that there is no need to normalise this aggregate value since the top-L values are interpreted

as contacts. In the absence of a contact prediction head with learnable parameters, the

pairwise features extracted by the GPLM are not obviously more expressive than those

extracted by APLMs. However, for longer-range contacts, it appears that the magnitudes

of attention weights in ESM-1b are highly correlated to contacts (see Fig 2.3).

2.2.4 Perplexity is not a predictor of precision

Perplexity (PPL) is a metric commonly used to evaluate how well a language model

“understands” an input sequence. This score is based on the model’s ability to correctly

predict masked tokens using the surrounding context. More formally, given an ordered
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Figure 2.4: Evaluating sequence perplexity over the test dataset. A Perplexity
(exponential of the negative, average log-likelihood) for several protein language models calculated
across the entire test set. Lower is better. B Relationship between perplexity and precision
for a PLM trained on a general set of proteins, and one trained on antibodies only. Note that
the logistic regression head is not relevant to the calculation of perplexity. C Perplexity of the
HCDR3 sequences from the test set. D Relationship between the perplexity of the HCDR3
sequences and the precision on those regions of the antibody. The APLM shows some dubious
correlation (see text for details) while the GPLM shows no appreciable correlation between the
two measures.
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set of amino acids x = {x1, x2, ..., xL} where position i is masked in the input sequence,

the LM will use the sequence to generate a probability distribution for the missing token

xi over its vocabulary, V. The likelihood of predicting the correct token is, therefore,

pθ(xi|x \ {xi}). By sequentially masking each token in the set, one can calculate the

exponential of the negative, average log-likelihood of the tokens:

PPL(x) = exp

(
− 1

L

L∑
i=1

log pθ(xi|x \ {xi})

)
∈ (0, |V|) (2.2)

A PLM which makes predictions at random will receive a perplexity score of |V| while
a perfect model would score a 1. The score can be interpreted as the average number of

amino acids that the model is uncertain between. A model that is able to reliably predict

the identity of a masked token must have the ability to extract relevant information from

the surrounding context. Arguably, this ability can be construed as understanding.

A well-calibrated confidence measure would be invaluable when deciding how trust-

worthy a model’s predictions are. One would expect that low perplexity sequences would

correspond to more precise predictions allowing the perplexity score to act as a confidence

measure. This was in fact demonstrated for ESM by Rives et al. [91, 71] where low

perplexity sequences reliably generate better quality structures.

Unsurprisingly, pretraining on antibodies allows APLMs to better predict missing

residues, demonstrated by lower perplexity scores, than their generalist counterparts (see

Fig 2.4A). However, in the case of antibodies, there seems to be no significant correlation

between a sequence’s perplexity and the precision of the predictions (Fig 2.4B).

To interrogate this relationship further, one can isolate particular regions of the antibody.

Strangely, for AbLang (an APLM), if the perplexity is only calculated by masking residues

in HCDR3 (see Fig 2.4C) there seems to be a positive correlation (Pearson correlation

coefficient of ≈ 0.4) between the masked-perplexity score and precision in the same region

(see Fig 2.4D). This correlation does not exist for GPLM such as ESM-1b. On face value,

this result is discouraging: AbLang should generate higher precisions at lower perplexities

ideally resulting in a negative correlation. However, the reliability of this correlation does

not hold up under scrutiny. The Pearson correlation coefficients between the perplexity of

HCDR3 sequences, and the model’s precision across all framework regions and HCDR1

are 0.57 and 0.41 respectively. The model’s ability to predict missing residues in HCDR3

should not be correlated to its ability to predict contacts between framework residues.

This indicates that the observed correlation in Fig 2.4D is likely to be spurious. In either

case, perplexity should not be used as a proxy for the model’s confidence.
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Figure 2.5: Cumulative contacts across aligned antibodies. A Cumulative contact matrix
found by summing aligned (according to IMGT positioning) contact maps from 4092 antibodies.
Conserved contacts rarely lie in CDRs. The canonical “stem” of the HCDR3 loop is circled in
green. B A histogram over the values in A (only taking into account positions in the matrix
which are non-zero, of which there are 5104 out of 32,761 possible contact positions in the aligned
matric) reveals a bimodal distribution. The peaks are generated by contacts which are either
extremely rare (< 2/4092), or conserved (> 3500/4092). C Relative contribution of contacts in
the cumulative matrix conditioned on the region.

2.3 Evaluation using antibody-specific metrics

Evaluation using standard metrics seems to indicate that sufficiently large GPLMs capture

more salient structural features than their antibody-specific counterparts. However, using

metrics which are designed to evaluate structure prediction on general proteins may

introduce a bias. To truly separate the two classes of models, more antibody-specific

metrics are required.

Predicting the conformation of an antibody, on average, is straightforward since the

majority of the structure is conserved. Contacts which are most commonly conserved,

and therefore most trivial to accurately predict, usually exclude residues within the CDRs

(Fig 2.5A). Furthermore, these regions of the antibody do not directly determine binding.

In the context of antibodies, a structure prediction technique is truly valuable if it can

facilitate the study of the molecule’s binding dynamics. Adjusting the evaluation criteria

based on these unique criteria of antibody structure prediction can be accomplished by

focusing on contacts involving residues within CDRs.

2.3.1 Focusing on CDRs

Only considering the model’s most confident predictions could imply that only contacts in

the framework regions are being considered. Since these contacts are conserved it is trivial

for a model with sufficient capacity to store this information in its parameters.
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Figure 2.6: Evaluating precision within CDRs. A Precisions of contacts where at least
one residue is in HCDR3(left) or any HCDR (middle) are compared to the precisions of predicted
contacts where neither residue is in a CDR (right). Blue-green hues represent language models
trained on antibodies, while orange-purple hues represent those trained on a generic set of
proteins. Precisions (P@L, P@l/5) are reported where predictions were made by fitting a
regularized logistic regression head to the attention maps of the PLMs. B The aligned, top-L
most confident predictions are summed across the test dataset to generate a frequency map. A
randomly initialised language model coupled with a logistic regression head (RoBERTa• →LR)
demonstrates no pattern in its predictions. On the other end of the spectrum, large GPLMs
make confident predictions which are tightly packed within FRs. Frequencies are coloured using
a logarithmic scale to make less common contacts more visible and emphasise highly consistent
predictions.
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Fig 2.6B demonstrates a tendency for the GPLM to make confident predictions in

framework regions while the predictions of the APLM are much more varied. This is

interesting for two reasons. Firstly, by comparing these frequency maps to the one in

Fig 2.5A, it seems that the APLMs, despite only ever being exposed to antibodies, do not

capture the canonical contacts within the framework regions. In comparison, GPLMs focus

on these positions without having to train their accompanying contact prediction head on

antibodies. Because the FR contacts are more common than those involving CDRs, it is

likely that this explains the discrepancy in precision between APLM and GPLMs seen in

Sec 2.2 and Fig 2.2A.

Secondly, these frequency maps indicate that the evaluation metrics being used are

insufficient in the context of antibody structure prediction. If only examining the most

confident predictions, a model which predicts the structure of framework regions perfectly

but is uncertain about contacts in the more interesting variable regions will score higher.

To account for this, each region in the chain (defined by IMGT) is evaluated inde-

pendently. In practice, this entails predicting contacts across the entire chain and then

separating contacts into non-overlapping sets. For example, if at least one of the residues

in a pair lies in HCDR1, that pair will be included in the analysis of HCDR1. However, to

be included in the analysis of the framework region, both residues must reside in one of

the four framework segments of the chain.

As suspected, the large GPLMs have close to perfect precision in the framework regions.

More interestingly, despite not being specialised for antibody structure prediction the larger

GPLMs outperform the APLMs in CDRs - including CDR3 - as well (Fig 2.6A). Even

ESM-1b→LR⋆ manages to achieve a higher precision than the best-in-class AbLang→LR.

This seems to indicate that pretraining on antibodies also does not endow a PLM with

the ability to make accurate predictions in hypervariable regions. To that end, it seems

that exposing a language model to variable protein conformations during training is more

advantageous.

2.3.2 Predicting rare contacts

Evaluating contacts within CDRs is more revealing than considering the entire chain at

once. However, the results of this experiment remain susceptible to bias introduced by

highly conserved positions. One should expect the contacts comprising residues within

HCDR3 to score lower than other CDRs. However, this is not the case (see Fig 2.6A).

One possible reason for this unexpected result is that the contacts in HCDR3 are more

common than other complementarity-determining regions in this dataset (see Fig 2.5C).

This would encourage the contact prediction head to focus on HCDR3 during training,

placing a higher priority on those positions to achieve an optimal fit to the dataset.

Another possible explanation is the presence of a few conserved contacts in HCDR3.
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Figure 2.7: Evaluating Language models on rare contacts. A Observed contacts between
IMGT positions split by frequency of occurrence in SAbDab. B P@L of contact predictions
masked by the frequency maps in A. The leftmost panel represents the precision on the rarest
contacts, whereas the rightmost represents precision on common contact positions. C Area
under the precision-recall curve after predictions are masked by the frequency maps in A. D
Relationship between prediction precisions and HCDR3 length where the frequency of each
length is calculated from a filtered version of SAbDab.
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Metric
Best APLM Best GPLM

Difference
Model Score Model Score

P@L, long range AbLang 0.4 ProtT5 1.0 0.6
P@L, CDR AbLang 0.35 ProtT5 0.45 0.1
P@L, common AbLang 0.28 ProtT5 0.42 0.14

Table 2.2: Summary of evaluation metrics

Immunoglobulin domains fold into a canonical “beta-sandwich” comprising antiparallel

pairs of beta strands that form two adjacent sheets. Since the antiparallel strands on

either side of the sandwich are close together, they result in canonical contact patterns

perpendicular to the diagonal of the contact matrix (note the antiparallel patterns of

contacts in Fig 2.5C). This sandwich forms the framework onto which the CDR loops attach.

Some numbering schemas, such as IMGT, include a small portion of this framework in

HCDR3. These “stems” act as anchor points, connecting the haphazard looping structure

to the conserved beta strands. Because they serve this essential function, the stems’

representative antiparallel lines are found consistently in most antibody contact maps

between the start and end of the HCDR3 loop (see the green circle in Fig 2.5). These

stems could skew the analysis described in the previous section since a small number of

highly conserved contacts is likely to boost the P@L observed for HCDR3. Because it has

been established that GPLMs are proficient in predicting conserved contacts, the stems

could explain their surprisingly high precision observed in Fig 2.7A.

Standard numbering schemes are constructed for convenient analysis and comparison.

Like all simplifying models, they are imperfect. To remove any bias introduced by the

overlap of numbering schemes with conserved regions, one can directly evaluate the model’s

performance on rare contacts. The frequencies with which particular contacts appear to

follow a bimodal distribution: peaks are formed around exceptionally rare, and consistently

conserved contacts respectively (Fig 2.5B). By using the frequencies with which contacts

appear in SAbDab, and the shape of the estimated distribution as a guide, one can create

masks that partition the possible contact positions in an aligned contact map into rare

(p < 0.001), common (0.001 < p < 0.9), and highly conserved (p > 0.9) contacts (Fig2.7A).

The rare contacts are found in CDRs 73%. This set often comprises contacts between rare

insertions in the HCDR3 loop. There are also many interactions between residues close to

the borders of CDRs which may be an artefact of the artificial boundaries enforced by the

chosen numbering scheme. On the opposite side of the spectrum, highly conserved contacts

are only found within CDRs 15% of the time. Interestingly, this subset of contacts is

dominated by sections of residues in HCDR1 and HCDR3 which are consistently close

together in 3D space. In between these two extremes are “common” contacts most of

which (76%) lie in CDRs. These include the stems of HCDR3.

After inference and alignment, these masks are independently applied to contact
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map predictions and ground truth. The P@L and average precision (area under the

precision-recall curve) of the masked predictions are reported in Fig 2.7B and Fig 2.7C

respectively.

On rare and conserved contacts there is no significant performance difference between

the featurisers. In both of these cases, pretraining the language model seems to offer no

benefit (note the comparable performance of RoBERTa•). This implies that rare contacts,

notably contacts between HCDR3 insertion positions, are not captured by the model’s

attention matrices. In fact, 2.7D demonstrates that ESM, one of the most successful PLMs

according to all metrics presented, have poor precision for HCDR3 loops with uncommon

lengths. This hints at an inability to generalise to uncommon conformations.

Prediction precision on contacts which are not rare or highly conserved is more varied

between featurisers. Once again, the performance of GPLM exceeds that of the APLMs

despite most of these positions falling into CDRs. This result is comparable (see Table

2.2) to evaluating contacts within CDRs, where the drop in performance can be explained

by the exclusion of highly conserved contacts, and the drop in variance is likely caused by

the removal of rare contacts.
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Chapter 3

Contact Prediction Heads

Using an LR-based CPH to predict contacts is useful to identify and extract structural

information which has already been generated by the PLM. However, it is feasible that

more complex models could take advantage of more subtle patterns in the attention

maps to more precisely predict contacts. A precise contact predictor could prove useful

in a number of downstream tasks including 3D structure prediction [119] and antibody

design [117].

3.1 Beyond logistic regression

By stacking attention maps one can extract L × L fixed-length representations - one

for each pair of positions. Even when considering these fixed-length representations in

isolation from one another, there are a number of models which can be used to predict

whether or not the residues in this pair are in contact.

One such model is a binary decision tree classifier. Each node in a decision tree splits

the data into two parts using a threshold on one of the feature dimensions. By tuning

a set of sequential thresholds (decisions) and iteratively splitting up the feature space

into regions, a decision tree attempts to perfectly non-linearly separable classes. Note

that LR can only determine a linear decision boundary between classes. Given a new

datapoint, the tree’s learned thresholds are applied to determine the class label of the

region in which the datapoint lies. A Random Forest (RF) [11] is an ensemble learning

method whereby several decision trees are fit to random samples of the training data. At

inference time, each tree independently classifies new data points. A consensus is usually

formed by selecting the most commonly predicted class.

Using the same set of 20 antibodies to train the LR models in Sec 2.2.3, RF classifiers

were trained for the top-performing featurisers. The RF models consistently outperform

LR models in predicting contacts in all regions using GPLM attention maps (see Fig 3.1F).

For AbLang, the RF was outperformed by the baseline LR-based CPH. This is surprising
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because an ensemble of decision trees is a more powerful discriminator than LR. However,

overly complex trees are prone to overfitting. With hyperparameter tuning, it is likely

that the RF will outperform the simpler model for any PLM.

3.1.1 Moving towards an optimal architecture

To further explore a range of CPH architectures, ProtT5 was chosen as a featuriser.

Although this was the largest model evaluated in Sec 2, it achieved the highest precision

on rare contacts as well as contacts involving residues in HCDR3. LR is used as a baseline

model to compare different estimator’s abilities to predict rare (Fig 3.1A) and regional

(Fig 3.1B) contacts. In all cases, the hyperparameters of each model are tuned to achieve

maximal precision. To achieve this, once again 20 antibodies (identical to those used in

Sec 2.2.3) were randomly sampled from the cleaned selection of SAbDab. Because proximal

residues are rare in comparison with residue pairs which are far apart, the dataset was

rebalanced to avoid introducing a bias towards the “no-contact” class. Class balancing

was achieved by selecting a random set of non-contacting pairs of equal cardinality with

the set of pairs in contact. After rebalancing, the dataset comprised just under 70,000

data points each of which is in R768. This training dataset, mapping fixed-length vectors

extracted from attention maps to a binary output, was kept constant for all CPHs. To

compare the performance of the CPHs a test set comprising 100 antibodies was set aside

from the SAbDab dataset, taking care to exclude any of those used during training.

To maximise performance, for each model architecture, a combination of random

search1 and cross-validation (5 splits) is used to tune a selection of hyperparameters.

In the interest of time, hyperparameter tuning was not exhaustive. Some configurable

parameters were set. For example, at each node, the RF is restricted to considering

the square root of the number of available features and splits are evaluated using Gini

impurity [12]. However, the number of trees and the maximum allowable depth of those

trees were tuned. The most successful RF used 152 estimators with a maximum depth of

15.

Alongside an RF, a variant tree-based ensemble method implemented using Ad-

aBoost [45] is tested. As well as fitting several trees on random subsets of the training data,

this training protocol “boosts” the model’s ability to correctly classify data points that are

initially misclassified. It does this by iteratively training new classifiers on samples from

the same dataset while adjusting the weights of incorrectly classified items to encourage

the next iteration to learn from the previous estimators’ mistakes. For this architecture,

the number of trees needs to be balanced by the importance of each tree (referred to as

1Random search is one technique for searching through the space of possible hyperparameter combina-
tions. In each iteration, each parameter is randomly selected from a user-specified distribution over a set
range of permissible values.
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Figure 3.1: Comparison of different contact prediction heads. A Comparing different
CPH architectures using the average precision achieved on rare contacts. B Comparing different
CPH architectures using the precision achieved in different regions of the antibody. C Normalised
Gini Importance from a Random Forest contact classifier trained on ProtT5 attention maps. Gini
Importance is a measure which indicates the amount by which a feature reduces the impurity
of a split at a node in a decision tree. The features which are most effective at splitting the
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the “learning rate” in Scikit Learn). A random search discovered 87 estimators with a

learning rate of 1.0 to be optimal in the range considered.

Additionally, a multi-layer perceptron (MLP) is assessed. Inspired by a simplified

model of a neuron, each node in an MLP computes a weighted sum of its inputs and passes

the result through a non-linear function (in this case a Rectified Linear Unit, or ReLU

[38]). The network parameters are optimised to minimise the binary cross entropy loss

using the Adam optimser [61], a variation of stochastic gradient descent, with a batch size

of 128. The model tested had three hidden layers with 64, 32, and 16 nodes respectively.

This design decision was arbitrary, following a common heuristic of halving the number of

nodes with each layer. With more time, the depth and dimensionality of the network could

have been tuned for better performance. Hyperparameter tuning identified a learning of

0.01 and a regularisation strength (referred to as “alpha” by Scikit learn) of 0.001.

Evaluating these architectures over the same test set and comparing them to the

LR-based CPH as a baseline indicates that an RF is the most successful at predicting

both rare (see Fig 3.1A) contacts and contacts in CDR contacts (see Fig 3.1B).

3.1.2 Important features are shared between architectures

Gini impurity is one way to measure the quality of a split at a single node in a decision

tree. At every node, the splitting function utilises a feature and corresponding threshold

which minimised the impurity of the two child sets. This can be loosely interpreted as

a measure of the misclassification rate in each of the splits. Features which can be used

to create cleaner splits in the data contain more information about the class of the data.

One can therefore rank features using their Gini importance: the normalised reduction in

the Gini impurity brought about by that feature.

Interestingly, there is a high correlation between an RF’s feature importances and the

weights of an LR model (see Fig 3.1E). As was shown for ESM in Fig 2.2 LR models place

high weights on the deeper layers of the transformer. Examining the most important

features identified by an RF reveals the same pattern (see Fig3.1C).

3.2 Strategies to further improve CPH performance

Based on the investigation presented in the previous section, RF-based CPHs demonstrate

a strong ability to predict inter-protein contacts from attention maps. Even more complex

architectures are likely to further improve performance. For example, other successful

structure predictors share information between positions in the attention maps using

standard [119] or graph-based [98] convolutions. However, the intention is to achieve

maximally precise contact predictions using only the structural features extracted via
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Figure 3.2: Identifying factors that affect the precision of an RF-based contact
predictor. A Effect of the number of antibodies used during training on the precision
of contacts involving residues in HCDR3. B Effect of changing the number of attention
maps extracted from each training datapoint on the average precision. The attention maps
were chosen based on a secondary logistic regression model (see Sec 1.5.1) which uses L1
regularisation to identify a sparse set of the most important attention maps. In each run,
the N most important attention maps are chosen according to the learned weights of the
logistic regression model where N ∈ N[1,768] = {x ∈ N|1 ≤ x ≤ 768}. C Comparing models
with identical architectures, trained on the same set of antibodies. However, the orange
model is only trained on data points which involve HCDR3, whether the residue pair is in
contact or not. Performance on HCRD3 increases slightly while precision in framework
regions drops dramatically.
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self-supervised learning. A model which has access to features at multiple positions in the

chain might learn to extract structural information itself thereby diluting this analysis.

Furthermore, a highly complex model would overfit the relatively small dataset available.

It is therefore interesting to see if better results can be achieved using only traditional

machine learning. This restricts the structure predictor to relying on the contextual

information encoded in a single slice of the stack of attention matrices rather than allowing

it to continue building new relationships between positions in a protein Therefore, this

section explores a few approaches to increase precision using an RF-based CPH.

Increasing the size of the training dataset Up until this point, all CPH models have

been trained on the same selection of 20 antibodies. Reserving the 100 antibodies from Sec

3.1.1 for evaluation, the size of the training dataset was varied from 1 to 1000. Each dataset

was rebalanced such that the number of residue pairs in contact matched the number of

non-proximal residue pairs. Furthermore, in every iteration, the hyperparameters of the

model are tuned using cross-validation and a random search to find the optimal number

of trees, and maximum tree depth associated with each training dataset.

Using more than 200 antibodies does not seem to provide any benefit to predicting

contacts, especially those associated with HCDR3 (see Fig 3.2).

Fitting CPH on a subset of attention matrices ProtT5 is a large model, with

768 attention maps generated for every input sequence. As illustrated in Fig 3.1 C and

D, only a small set of those attention maps are significantly more important than the

others. It should then be possible to train the contact predictor on a subset of these highly

informative features rather than the entire stack of attention maps. This reduced feature

set may reduce overfitting by removing noisy features in the data. Another advantage is a

decrease in computational complexity. Although this speedup is insignificant for a single

protein, it could make a substantial difference if predicting the contacts of a large set of

sequences.

To test the effect of this feature selection tactic a set of models were trained on 100

randomly sampled training antibodies and evaluated on the same test dataset as above.

In each training run, a set of features is selected (ranging from 1 to 768 in number), a new

model is trained, and its hyperparameters are tuned.

As illustrated in Fig 3.2C, with anything more than 50 features it is possible to match

the performance of a model trained with access to all attention matrices. A similar

observation was made by Weissenow et al. [119] which led them to use only 50 attention

maps for their CNN-based structure predictor.

Region specific training One can think about the role of a contact predictor as a

mechanism to select the attention maps which contain structural information and combine
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them. With this framing, one can imagine a contact predictor trained to extract the

attention maps which are most relevant to structural information in a particular region of

the antibody. By simply masking out all regions other than HCDR3, it is possible to train

a contact predictor that outperforms an unmasked estimator in that region (see Fig 3.2).

However, this new model is unsurprisingly poor at predicting contacts in framework

regions.

Since the regions of an antibody can be isolated using a tool like ANARCI [28] it is

entirely feasible to use an ensemble of region-specific models to maximise precision. For

example, one could predict HCDR3 contacts with one specialised model, and use a more

general model to make predictions for the remainder of the chain. Ultimately a highly

specialised HCDR3 contact predictor is immensely more valuable than a model that can

generalise across the chain.
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Chapter 4

Discussion and Conclusion

The application of deep learning in protein structure prediction has revolutionized the field

of protein structure prediction, providing access to a vast number of previously unknown

protein structures. However, a consistently accurate model for folding a sequence into

its lowest energy conformation without external information has not yet been developed.

Although AlphaFold2 has shown some promise in approximating a biophysical energy

function [94], it still requires a multiple sequence alignment to locate a starting point

on the energy landscape. Moreover, some argue that AlphaFold2 fails to capture the

dynamics of folding [82], thereby limiting its capacity to provide insight into the underlying

physics of the system. Clearly, the problem of protein folding remains unsolved. Thus, it

is crucial to carefully evaluate the ability of recent deep-learning-based methods to handle

proteins with untraceable lineages before translating their successes to the design of de

novo antibody therapies.

This paper presents a thorough comparison of pre-trained language models’ (PLMs)

intrinsic capacity to capture antibody structure, evaluating featurisers using both standard

and antibody-specific metrics. Although they are not perfect, these models aim to generalise

to unknown regions of the protein landscape and may, therefore, be suitable for capturing

useful structural information in sequences with few homologs. By carefully evaluating the

proficiency with which different PLMs reason about the structure of functionally important

regions of antibody sequences, it was found that PLMs trained on general sets of proteins

extract more information than those trained on antibodies alone. All featurisers considered

were transformer-based, an architecture known to improve with parameter count and

training time. It is therefore possible that the observed improvements could be attributed

to the size of the GPLMs as well as the resources well-funded research projects have during

training. An important future line of research would be to train much larger APLMs and

compare their abilities to an equivalent-sized GPLM.

It was also demonstrated that these transformers capture structurally relevant infor-

mation in a subset of their internal representations. After symmetrisation and APC, a
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sparse combination of these attention maps can closely approximate distances between

residues which are close or far apart in sequence space. Unsurprisingly, the most important

attention maps for predicting the structures of general proteins are not the same set of

matrices relevant to antibody structure. When restricted to using an LR-based contact

predictor, maximal precision was achieved using by training an L1-regularised CPH on a

small set of antibodies. This allowed the model to identify which attention maps were

important and ignore redundant or useless information. Extending this idea, a regularised

LR model can be used to extract only information useful to predicting contacts with

residues in HCDR3 (or any other desirable region). Therefore, it seems possible to improve

prediction accuracy by training a model to select the most appropriate representations

for the class of proteins being modelled. This selection process can be taken even further

by selecting attention maps for a region of interest, HCRD3 for example. If speed is a

priority, these findings indicate that downstream processes can efficiently utilise a small

subset of representations without reducing performance.

Swapping out the LR-based model with more powerful estimators significantly improves

performance on rare contacts as well as those inside HCDR3. This performance can be

maintained using a subset of attention maps chosen by the LR model. The models explored

were limited to making predictions based only on pairwise information extracted through

self-attention. It is likely that even more complex models which combine these pairwise

features, using convolutions for example, would further increase performance.

However, in all cases, regardless of the pretraining strategy used, none of the featurisers

were capable of precisely predicting exceptionally rare contacts inside and outside the

hypervariable regions of antibodies. If the transformer is incapable of exposing these

relationships, it seems unreasonable to expect a downstream model to make accurate

predictions. It remains unclear exactly what causes this failure but it does gesture towards

an inability to generalise to unexplored regions of protein space. If these models truly

understood the physics of folding, they would display no difficulty predicting uncommon

contacts between positions in a chain. Based on this, it is possible that the abilities of

PLMs remain bound by the data that they are exposed to during training. If this is true,

more effort is required to build rich and varied antibody datasets before the potential of

PLMs can be fully utilised for rational design. For a clearer picture of their ability to

generalise, further research is required to determine whether structural motifs in PLMs’

training datasets can also be observed in their test sets.

Furthermore, this evaluation is not exhaustive, and further research is necessary to

assess the sensitivity of PLMs. For example, during lead optimization, a PLM must

distinguish between structurally distinct proteins with highly similar sequences. Studies

have shown that PLMs often fail to predict misfolding caused by single-point mutations

(SPMs) [15]. This limitation can be measured by demonstrating that a transformer
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generates highly similar contact maps for a wild-type and a slightly mutated defunct

sequence. The extent to which these adversarial [17] single-point mutations affect contact

predictions in an antibody’s binding region remains unexplored. Conversely, there is

evidence that biologically irrelevant perturbations to the sequence can induce radical

conformational changes to the PLM’s predictions [52]. Therefore, before these models can

be confidently used for the rational design of complementarity-determining region (CDR)

loops, these limitations must be more clearly understood.

Despite this, it is still possible to generate value using PLMs in their current form.

The findings presented in this report could inform the application of these new tools.

For example, precise contact map predictions can be used directly for 3D structure

prediction. Contact maps and distograms are useful but for many applications, the 3D

structure of a protein is more desirable. It is possible, using a tool like Rosetta, to initialise

a physics-based folding engine using a contact map. Therefore, a potentially fast and

efficient antibody structure predictor could be built using a pretrained GPLM, and a CPH

which utilises its most important attention heads and is trained on antibody structures.

The CPH’s predictions will then be used to generate 3D conformations. Although this is

not an end-to-end method, training a CPH is much faster than training an end-to-end

model from scratch. Furthermore, inference speed is expected to improve as a result of

efficient feature selection allowing for fast library characterisation.

It may also be possible to improve antibody-specific end-to-end methods. For example,

IgFold utilises an APLM to replace the MSA in a network which bears strong similarities to

AlphaFold2. This is because, empirically, AlphaFold2’s Invariant Point Attention appears

to be a particularly proficient network design to translate residue-level features into a 3D

structure. Based on the findings presented above, it is likely that IgFold would be more

successful if it simply replaced its APLM with a GPLM.

In addition to its utility for protein structure prediction, precise contact maps have

the potential to aid in the exploration of protein space by identifying structurally similar

proteins based on the distances between their contact maps. However, to achieve successful

mapping of protein clusters to antibody functions, it is necessary to use powerful PLMs

that can capture intricate structural relationships between residues. It is therefore feasible

to employ a GPLM to create contact maps which can be used to cluster antibodies based

on similarities in CDRs. This could provide valuable insights into which sequences are

likely to bind to the same antigen. As models become larger and more expressive CPHs

are used, one would expect the utility of these clusters to improve.

Furthermore, given an antigen structure, it is now possible to design an antibody-

binding fragment which binds to that target. Contacts generated from a PLM’s attention

maps can be used to iteratively formulate a sequence which is likely to fold into a fixed

structure designed to bind to the antigen. Based on their performance in predicting
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contacts in regions relevant to antibody binding, it seems advisable to use a GPLM rather

than an APLM for this task although both approaches should be explored.

Overall, until larger APLMs are available, this report suggests that a base heuristic

should be to leverage large GPLMs for design and prediction tasks which are structure-

informed.
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Foulquier, Lisa Truong, Valérie Thouvenin-Contet, and Gérard Lefranc. IMGT

Unique Numbering for Immunoglobulin and T Cell Receptor Variable Domains and

Ig Superfamily V-like Domains. Developmental and Comparative Immunology, 27(1):

55–77, January 2003. ISSN 0145-305X. doi: 10.1016/s0145-305x(02)00039-3.

[70] Rosalba Lepore, Pier P. Olimpieri, Mario A. Messih, and Anna Tramontano. PIGSPro:

Prediction of immunoGlobulin Structures V2. Nucleic Acids Research, 45(W1):W17–

W23, July 2017. ISSN 0305-1048. doi: 10.1093/nar/gkx334.

[71] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan

dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander

Rives. Language Models of Protein Sequences at the Scale of Evolution Enable

Accurate Structure Prediction, July 2022.

[72] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A Robustly

Optimized Bert Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

62



[73] C. Marks and C. M. Deane. Antibody H3 Structure Prediction. Computational and

Structural Biotechnology Journal, 15:222–231, January 2017. ISSN 2001-0370. doi:

10.1016/j.csbj.2017.01.010.

[74] Debora S. Marks, Lucy J. Colwell, Robert Sheridan, Thomas A. Hopf, Andrea

Pagnani, Riccardo Zecchina, and Chris Sander. Protein 3D Structure Computed

from Evolutionary Sequence Variation. PLOS ONE, 6(12):e28766, December 2011.

ISSN 1932-6203. doi: 10.1371/journal.pone.0028766.

[75] Debora S. Marks, Thomas A. Hopf, and Chris Sander. Protein Structure Prediction

from Sequence Variation. Nature Biotechnology, 30(11):1072–1080, November 2012.

ISSN 1546-1696. doi: 10.1038/nbt.2419.

[76] Vivien Marx. Method of the Year: Protein Structure Prediction. Nature Methods,

19(1):5–10, January 2022. ISSN 1548-7105. doi: 10.1038/s41592-021-01359-1.

[77] Faruck Morcos, Andrea Pagnani, Bryan Lunt, Arianna Bertolino, Debora S. Marks,
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